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Abstract. A stochastic approach to solving unconstrained continuous-function global optimization
problems is presented. It builds on the tunneling approach to deterministic optimization presented
by Barhen and co-workers (Bahren and Protopopescu, in: State of the Art in Global Optimization,
Kluwer, 1996; Barhen et al., Floudas and Pardalos (eds.), TRUST: a deterministic algorithm for
global optimization, 1997) by combining a series of local descents with stochastic searches. The
method uses a rejection-based stochastic procedure to locate new local minima descent regions and
a fixed Lipschitz-like constant to reject unpromising regions in the search space, thereby increasing
the efficiency of the tunneling process. The algorithm is easily implemented in low-dimensional
problems and scales easily to large problems. It is less effective without further heuristics in these
latter cases, however. Several improvements to the basic algorithm which make use of approximate
estimates of the algorithms parameters for implementation in high-dimensional problems are also
discussed. Benchmark results are presented, which show that the algorithm is competitive with the
best previously reported global optimization techniques. A successful application of the approach to
a large-scale seismology problem of substantial computational complexity using a low-dimensional
approximation scheme is also reported.
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1. Introduction

In two recent papers, Barhen and co-workers (Barhen and Protopopescu, 1996;
Barhen et al., 1997) reported a significant improvement in solving low-dimensional
global optimization benchmark problems. They developed a code called TRUST,
which employs a descent-tunneling methodology characterized by non-Lipschitzian
descent and one-dimensional (1-D) search. We will continue to refer to these 1-D
searches as tunneling, when necessary, only to make clear the link to Barhen’s
work. The essence of this approach is to break the solution of an optimization
problem down into two distinct phases: (1) local descent and (2) tunneling (using
1-D search). The descent phase makes use of local derivative information and the
wealth of algorithmic experience in finding local minima in continuous functions.
The search phase utilizes a generalization of the recent concept of tunneling Levy
and Montalvo (1985) to find a new region in which to begin to descend again.
Instead of searching for zeros of a polynomial as in (Levy and Montalvo, 1985),
however, a one-dimensional search scheme is used to tunnel to the basin of at-
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traction of a new local minimum. What makes this combined approach novel and
efficient is that by descending into a local minimum before beginning to search
for a new descent region, the method avoids repeated descents to the same local
minimum. The final solution is thus, in effect, a single descent interspersed with
1-D searches to find the descent basins of new local minima. A key characteristic
of this method, using 1-D search to find new basins, is an attractive feature because
in general the ratio of a basin’s perimeter to its volume favors a 1-D search over
multi-dimension (volume) search for anything but a hyperspherical basin (Törn and
Zilinskas, 1989). Both of these characteristics seem to explain the improvements
Barhen et al. (1997) reported in benchmark testing using the TRUST methodology
for a paper in Science.

Starting with the Barhen et al. descent-tunneling methodology as the basis for
our research efforts, it is clear that for higher dimensional problems the search
phase of the algorithm needs improvement. In high-dimensional spaces, search
is much more costly in terms of function evaluations than descent. In order to
move from benchmarks to realistic high-dimensional problems, therefore, further
improvements must be made in TRUST’s search methodology. The most limiting
characteristic of search, however, is that local derivative information is of little
(or, in principle, no) use in locating a new basin of attraction different from those
already found. We must, therefore, explore what other information can be used to
help in this search process. Most recent research indicates that branch and bound
approaches address this problem theoretically but are complex and costly to imple-
ment in practice (see for example Horst and Tuy, 1993; Törn and Zilinskas, 1989).
The bounding process allows certain regions of the search space to be eliminated
from further function evaluations.

It is also widely understood that practical global optimization problem can-
not be solved in general without imposing resolution or probabilistic convergence
constraints on its solution or adding additional information (such as a Lipschitz
constant) with which to bound the solution (Wood, 1992; Stephens and Baritompa,
1998). Without such constraints or information, it is impossible to know how to halt
an algorithm and declare that the lowest-to-date minimum is the global minimum.
Only an exhaustive bounded search is guaranteed to find a global minimum, since
no local information can ever be used to characterize the current best answer as
definitively being the global minimum. From a practical standpoint, we found that
probabilistic constraints and added global information are easier to implement and
have, therefore, concentrated our efforts in this area. In this approach only a prob-
abilistic guarantee can be given that the best local minimum found is the global
minimum. There is always a chance that another lower minimum will be found,
albeit within a user specified probability constraint.

The comments above lead us to believe that a stochastic approach to Barhen’s
approach, coupled with some limited knowledge of function bounds and Lipschitz-
like constants, can be made the basis of a powerful yet simple optimization al-
gorithm. To make maximum use of such bounding information, a low (or one)
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dimensional stochastic tunneling approach to covering a high-dimensional space
seems to be necessary. Since we are committed to a stochastic reformulation of
Barhen’s method, we reiterate that only a probabilistic guarantee can be made on
deciding whether a global minimum has been found. A halting algorithm which
stochastically characterizes the solution is thus our aim. We will use a simple
PAC (Probabilistically Approximately Correct) criterion successfully developed to
halt machine learning algorithms (Oblow, 1992). Without stochastic characteriz-
ation the only other alternative would be to solve the problem within prescribed
resolution bounds using a fixed grid and an associated fixed number of function
evaluations.

We propose, therefore, to only make use of global bounding information in a
low-dimensional stochastic algorithm to significantly improve the tunneling phase
of Barhen’s TRUST algorithm. In doing so we utilize the already powerful breakup
of the problem into local descent and tunneling. To accomplish this, we adapt the
classic Pijavskij one-dimensional bounding procedure (Pijavskij, 1972) to higher
dimensions to treat tunneling as a classic stochastic search problem. This coupling
of search and descent eliminates many of the problems encountered in the past
with bounding approach by using a stochastic version of Pijavskij’s method useful
exclusively in the search phase. The new approach is called SPT: (S)tochastic
(P)ijavskij (T)unneling, suitable for the tunneling-search phase of Barhen’s al-
gorithm. This methodology is closely allied with similar extensions of bounded-
covering algorithms published by Wood (1992), Shubert (1972), Evtushenko (1985),
Mladineo (1986) and Baritompa (1953) and borrows heavily from these references.

We apply the stochastic improvements developed directly to the combined des-
cent and tunneling TRUST algorithm. This allows us to revisit the benchmark
calculations Barhen et al. (1997) reported in Science, to see what improvements can
be made in these already good results. We will also solve a new high-dimensional
seismic problem similar to the one reported in the Science paper to demonstrate the
method’s scalability.

2. Problem Formulation

The generic global optimization problem considered in this paper is defined as
follows. Let f (x) : D → R be a bounded piecewise-continuous differentiable
function and x be an n-dimensional state vector. The function f (x) is referred to as
the objective function, and D its domain. The optimization goal is to find the state
vector x∗ which minimizes f (x) in D . Without loss of generality, we shall take D
to be the hyperparallelopiped D = {xi |β−

i � xi � β+
i ; i = 1, 2, . . . , n} ,where

β−
i and β+

i denote, respectively, the lower and upper bound of the i-th state variable.
We address this unconstrained global optimization problem by breaking its

solution into two phases. The first, is a standard local descent phase in which
local derivative information is used to converge a descent algorithm to a local
minimum. Any efficient descent algorithm can be chosen for this phase of the work.
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Many finite difference methods, as well as Jacobian or Hessian based schemes, are
available for algorithmic implementation. Once a local minimum has be found, the
second phase will employ a stochastic search to find a new local minimum basin of
attraction with a lower local minimum to descend into. This procedure is employed
to avoid costly repeated descents into already identified local minima, a character-
istic weakness of multiple random start algorithms (Ratschek and Rokne, 1988). It
should be noted that this step represents an algorithmic decision that might not be
optimal for all problem classes. Specifically, this approach performs less efficiently
in problems characterized by the existence of a hierarchy of local minima that
has increasing numbers of narrower and narrower minima as the function values
decrease. New minima become more difficult to find because of decreasing basin
sizes in such cases.

To improve the search phase of Barhen’s algorithm we use a new stochastic ver-
sion of Pijavskij’s one-dimensional bounding algorithm. The deterministic version
of this algorithm (Pijavskij, 1972) has been widely studied in global optimization
work in the past. Its geometric complexity in higher dimensions and its slow con-
vergence even in one-dimensional cases have often been cited as the reasons for
its limited usefulness in most practical problems (Ratschek and Rokne, 1988). By
developing a stochastic version of this traditional algorithm and using it only in the
search phase of our methodology, we hope to eliminate these problems entirely.
The newly developed SPT (Stochastic Pijavskij Tunneling) algorithm is easily
implemented in one-dimension and scales well to higher dimensional problems,
although its usefulness decreases exponentially in this latter case.

3. A Stochastic Pijavskij Algorithm

Since Pijavskij’s one-dimensional deterministic algorithm is well known (Pijavskij,
1972), only a few words are needed here to highlight the improvements afforded by
a new stochastic implementation. The principle used by Pijavskij in his original pa-
per (Pijavskij, 1972) and also employed by Shubert (Shubert, 1972), was to utilize
the Lipschitz constant to determine a lower bound for the global minimum of a one-
dimensional function. We assume the function f is continuously differentiable and
define the Lipschitz constant as: L = (|f (x)−f (y)|/|x− y|)max,∀x, y ∈ D, x 
=
y. In practice, it specifies the largest rate of descent a function can have over a
region of interest. If the function is known for two values of x, and the maximal
descent rate (called an L-line for future reference) makes it possible to estimate a
lower bound fL for the function in the region between the two given values of x.
Using a zeroth-order estimate of this lower bound (i.e. f 0

L) and the point at which it
occurs x0

min, Pijavskij’s method prescribes that a guess for the position of the global
minimum x∗ should be taken at x∗ = x0

min, the intersection of the two L-lines. That
is, f (x0

min) should be evaluated to make a new estimate of the global minimum of
the function with the guarantee that f ∗ � f 0

L . The process can now be iterated to
produce a sawtooth lower bounding curve for the function.
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As is well documented, because no descent is performed Pijavskij’s scheme
becomes increasingly inefficient for flatter regions of the search space (i.e., as the
global minimum is approached). Local descent making use of local derivative in-
formation is clearly much more efficient in such regions. In addition, the extension
of the method to higher dimensions makes finding new points to evaluate much
more difficult. Multidimensional surface intersections are needed in these cases
to find the lower bound points which prescribe the next evaluation point. Several
approaches have been used to derive more useful alternatives to this difficult mul-
tidimensional task (Shubert, 1972; Evtushenko, 1985; Mladineo, 1986; Ratschek,
1988; Wood, 1992; Baritompa, 1993; Stephens and Baritompa, 1998) but they are
all more complex and inefficient in the high-dimensional problems of practical
interest. These later solutions are characterized by using multidimensional rect-
angular or conical elements. We will make use of the conical elements and refer
to them as P-cones in the rest of this paper. Clearly an approach that combines
descent and bounded search will produce a more efficient scheme than just the
simple extensions of Pijavskij’s method published to date.

To address this point, we propose to use the key characteristics of Pijavskij’s
algorithm, the L-lines (and, as needed in higher dimensions, P-cones), in just the
search phase of an optimization algorithm to prescribe the next evaluation point. In
Figure 1 we show how to use a sequence of five randomly selected points (labeled
1–5) to implement this new scheme. To start the algorithm we select the first point
labeled 1 and descend from it until the first local minimum is reached. This min-
imum has a value of f 0

min and is located at x0
min in the figure. Noting the value of

f 0
min as the lowest value so far evaluated, we now do a random search of x values

trying to find a new value of f (x) which is lower than f 0
min. In the figure this

first search phase ends with the selection of point 4 which has a value lower than
f 0

min. Before we find point 4, however, we sample x values randomly, successively
dropping cones with slopes corresponding to the L-lines from each newly selected
points to exclude regions of the x-axis from further sampling. The intersection of
these lines with the line corresponding to f 0

min defines these exclusion regions. The
darkened regions along the f 0

min line where the cones from point 1 (and all of its
descent points), point 2, and 3 intersect f 0

min prescribe these excluded x-regions in
the figure. These are valid exclusion regions because they cannot produce f values
lower than f 0

min if the L-lines truly represent a Lipschitz constant for the region
being searched. Once point 4 is sampled, we descend from it until we reach f 1

min
at x1

min. The cones from all points evaluated through point 4 can now be used to
extend the cones down to intersect f 1

min and the random search phase can begin
again. Since a larger range of x-values is now excluded from search, point 5 is
chosen next and we descend from there to x2

min. This process can be continued
indefinitely until the whole x region between a and b is excluded and f 1

min at x2
min

is found to be the global minimum in this case.
This figure thus illustrates that while Pijavskij uses the L-lines to prescribe the

next point to evaluate f , we use them with reverse reasoning to define the concept
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Figure 1. SPT iteration scheme.

of exclusion regions. In doing so we provide the basis for developing a stochastic
search version of Pijavskij’s basic scheme for finding new basins of attraction for a
descent algorithm to work in. To produce a basic stochastic algorithm then, we can
use a region-of-possibility for finding a point lower than the current lowest local
minimum to define a sampling region for selecting a new point for evaluation.
Pijavskij’s algorithm essentially takes the midpoint of the lowest subregion of this
region. A stochastic algorithm with a uniform distribution over the whole subre-
gion would have Pijavskij’s point as its average value. Sampling over all possible
subregions is simpler, however, and such a procedure should, on average, follow a
sequence of Pijavskij-prescribed evaluations.

A complementary algorithm using a rejection technique can also be used to
meet this end. This approach would randomly sample over the whole x-domain
and reject sample points which lie outside the region-of-possibility (i.e. those in
the excluded region) until an acceptable point is found. Both techniques have their
advantages and disadvantages. They both require search and storage operations to
determine intervals of possibility or exclusion and they are the complements of
each other in an algorithmic sense. Because of the difficulties entailed in extending
a direct sampling method to higher dimensions where function evaluations are usu-
ally the most costly component of an optimization algorithm we chose the rejection
approach for the SPT algorithm. The natural availability of a halting test based on
the probability of finding a point lower than any one found before, also favors this
rejection technique.
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4. The General SPT Algorithm

The general stochastic multi-dimensional SPT algorithm can therefore be described
as follows:
(1) Initialize with constants Nmax = log δ/ log ε, L, and N = 0. Here, L is

the Lipschitz constant and N counts the number of function evaluations the
algorithm makes.

(2) Select a random starting point x = x1 and set f ∗ = f (x1). Increment N =
N + 1.

(3) Use a descent algorithm to converge to local minimum incrementing N for
each lower value of f found in the process. Set f ∗ = f N = f (xN), where
xN is the point at which f attains the lowest value found by the descent
algorithm (i.e., f N ).

(4) Compute Pijavskij P-cone radii ri for all N points evaluated so far as fol-
lows: ri = (f i − f ∗)/L, ∀xi , i = 1, . . . , N .

(5) Iteratively select new random points from the region outside of all P-cones
intersecting f ∗, searching for a value of f less than f ∗. Increment N and
update all P-cones for each new point if f N > f ∗. Halt this procedure if
more than Nmax points are selected without finding a value of f lower than
f ∗ or all x are excluded.

(6) Go to step (3) if step (5) is successful in finding an f < f ∗, otherwise halt
and report f ∗ = fglobalmin.

In general this algorithm attempts to make a stochastic ε-cover of the x-domain
with confidence δ (see Oblow, 1992) using the only information on the Lipschitz
constant L to exclude certain unnecessary function evaluations. The larger a func-
tion value is compared to the lowest value of f found to date, the larger the
exclusion region is for finding new function evaluation possibilities. The exclusion
process is thus aided by large function values and lower minimum values. At some
point before Nmax is reached it is possible that the exclusion region will cover the
whole x-space and the algorithm will halt having found the global minimum. If
Nmax is exceeded, the algorithm will halt and the global minimum might not be
found. In this case only a probabilistic statement can be made about the f ∗. That
is, the probability of choosing an x value whose f (x) is lower than f ∗ is less than
ε with confidence δ. This constitutes only a PAC (probabilistically approximately
correct (Oblow, 1992)) solution to the problem for the chosen ε-cover.

Based on the description above, this new procedure can best be described as
an importance sampling technique for stochastically finding a value of f (x) lower
than an existing estimate of f ∗. The bias of the sampling is toward regions of the
x space that have lower function values than the current estimate of the global
minimum f ∗. Used in conjunction with a local descent algorithm, it goes from
local minimum to local minimum to try to find the global minimum or the deepest
minimum within prescribed stochastic confidence limits.
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5. Lower Bound Approximations

A striking feature of the algorithm given in the last section is the fact that the
larger the function values are compared to the current minimum value, the more x-
space is excluded from future function evaluation. Thus, larger function values or
lower minimum values make the method more efficient. This feature can be used to
great advantage by adding a single additional piece of information to the algorithm
to improve its efficiency. This piece of information is an estimate of the lowest
value the function can attain in the domain of interest (i.e., fM , an estimate of the
global minimum). Instead of letting the algorithm develop local minima estimates
of the global minimum as it proceeds, a good low estimate can be input right
from the start. This added parameter will immediately increase the efficiency of
the algorithm by increasing the exclusion region of potential function evaluations.
This efficiency increase will always improve the original algorithm until a local
minimum is found which has a value lower than the estimate.

This estimation process can be made formal and adaptive by the following
modification of the original algorithm:

(1) Initialize with constants Nmax = log δ/ log ε, L, fM , and N = 0. Here, any
convenient method for estimating fM , a lower bound for fglobalminimum, will
do.

(2) Select a random starting point x = x1 and set f ∗ = f (x1). Increment N =
N + 1.

(3) Use a descent algorithm to converge to local minimum incrementing N for
each lower value of f found in the process. Set f ∗ = f N = f (xN), where
xN is the point at which f attains the lowest value found by the descent
algorithm (i.e., f N ).

(4) Compare fM and f ∗ and choose the lower value (i. e. set fM = min(f M, f ∗)).
(5) Compute Pijavskij P-cone radii ri for all N points evaluated so far using fM

as follows: ri = (f i − fM)/L, ∀xi , i = 1, . . . , N .
(6) Iteratively select new random points from the region outside of all P-cones

intersecting fM , searching for a value of f less than f ∗. Increment N and
update all P-cones for each new point if f N > f ∗. Halt this procedure and
report f ∗ = fglobal min if more than Nmax points are selected without finding
a value of f lower than f ∗.

(7) Go to step (3) if step (6) is successful in finding an f < f ∗, otherwise set
fM = (f M + f ∗)/2 and go to step (5).

The purpose of using fM is simply to increase the exclusion regions of the
original algorithm forcing it to look for potentially much lower values of f earlier
than it would normally have. A lower bound on the global minimum derived from
the x region boundaries and the Lipschitz constant would serve this purpose, but
any reasonably small value will also work if altered adaptively as prescribed in
step (4). If an overestimate of fM caused the P-cones computed in step (5) to
exclude the whole x region, then reducing its size in step (4) costs no additional
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function evaluations and the algorithm could continue as usual. So long as function
evaluations dominate the computational effort required for this algorithm, using
even unrealistically low values of fM will introduce only negligible additional
computations and yet the efficiency of the original algorithm will be improved.

6. Pseudo-Lipschitz Approximations

As stated in Section 2 the general algorithm requires an estimate of the Lipschitz
constant as the only additional piece of information used to increase search effi-
ciency. Since analytic computer evaluated functions are our focus, the availability
of a good Lipschitz constant is assumed to exist. A closer examination of the cur-
rent algorithm however, reveals that a true Lipschitz constant is not really required
for this algorithm to work. What is required is a pseudo-Lipschitz constant, defined
as the smallest magnitude slope of any cone drawn from the global minimum which
remains just above the graph of the function in the basin of attraction of that global
minimum. This constant called Lps guarantees that no function evaluation will ever
cause the global minimum point to be excluded from potential function evaluation.
The point at which this L−ps cone just touches the graph is the point at which the
global minimum is finally excluded from evaluation by a P-cone drawn from that
point. It should be noted that even a square-well with infinite Lipschitz constant
still has a finite Lps provided only a single global minimum is to be found out of a
potential infinity of possible values. This concept is thus very powerful in practice
if a way can be found to estimate Lps rather than L.

The difficulty with this new concept is, however, precisely its estimation. In
principle this cannot be done without knowing a great deal of information about
the size and shape of the global minimum basin, the very thing we presumably are
trying to find. In practice however we can use an adaptive procedure to estimate
this parameter since we are ultimately willing to accept only a probabilistic answer
to the global optimization problem anyway. A possible procedure for estimating
this constant is given as follows:

(1) Initialize with constants Nmax = log δ/ log ε, fM , and N = 0.
(2) Select a random starting point x = x1 and set f ∗ = f (x1). Increment N =

N + 1.
(3) Use a descent algorithm to converge to local minimum incrementing N for

each lower value of f found in the process. Set f ∗ = f N = f (xN), where
xN is the point at which f attains the lowest value found by the descent
algorithm (i.e., f N ).

(4) If f ∗ is first minimum found, construct Lps from its definition using all
evaluated points in the descent to f ∗.

(5) Compute Pijavskij P-cone radii ri for all N points evaluated so far using f ∗
as follows: ri = (f i − f ∗)/L, ∀xi , i = 1, . . . , N .

(6) Iteratively select new random points from the region outside of all P-cones
intersecting f ∗, searching for a value of f less than f ∗. Increment N and
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update all P-cones for each new point if f N > f ∗. Halt this procedure and
report f ∗ = fglobal min if more than Nmax points have been selected without
finding a value of f lower than f ∗.

(7) Go to step (3) if step (6) is successful in finding an f < f ∗, otherwise set
Lps = 2 ∗min(Lps, L) and go to step (5).

Here, we estimate Lps from the first minimum found and proceed using all
the procedures used in the original SPT algorithm. In all cases we will reach a
point where Lps = L and the algorithm will almost be identical to the original.
The difference is that if the real Lps was smaller than L the sampling sequence
will have a higher probability of finding the real global minimum than the original
procedure. If the real Lipschitz constant had been used as the basis for a first cut
estimate of Lps then regions that would not have be sampled using the real Lps

will not be excluded, thus increasing the probability not finding the real global
minimum. Using L itself will either cause the algorithm to halt on the exclusion
condition or the Nmax limit. If the real Lps � L, we have pruned the sampling space
more efficiently with a better estimate of chance of opening up further sampling
regions by decreasing the estimate of Lps below that of Lps . As before, if the Nmax

limit is reached then the problem can be said to be solved only to the prescribed
probabilistic confidence.

It should be noted here that if this adaptive algorithm halts on the Nmax limit
being reached, it does not mean that Nmax function evaluations have been made.
Only Nmax x values have been chosen. The real efficiency of the algorithm will
depend on the size of the final exclusion region after halting takes place. In practice
orders of magnitude fewer function evaluations might be needed to achieve a prob-
abilistic confidence equivalent to a fixed grid of O(Nmax). For a relatively flat (or
even constant) function, Nmax function evaluations will probably be approached,
but few other algorithms can be conceived of that will do much better than this on
such a problem.

7. One-Dimensional Approximations

In practice this algorithm suffers from one limiting characteristic: its efficiency
compared to pure random search diminishes as the dimension of the x-space in-
creases. It becomes increasingly difficult to cover higher dimensional spaces with
P-cones based on a single Lipschitz-like constant. In practice the exclusion frac-
tion approaches zero in high dimensional problems and the algorithm is effect-
ively reduced to a pure random search. We expect the method to be useful in
low-dimensional problems (as will be demonstrated in the next benchmark testing
section) but practically only random search is achieved in very large-dimensional
problems.

A little further analysis reveals, however, that the maximum efficiency of the
method can be extended to higher dimensional problems by accepting a very use-
ful approximation to basic SPT approach. This approximation is based on the
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Figure 2. Two-dimensional exclusion regions.

construction of a multidimensional Lipschitz constant from partial derivative in-
formation. This construction is illustrated here by assuming that in each indi-
vidual x-direction the maximum Lipschitz constant Lx,∀x can be estimated and
it is roughly equal for all coordinate directions. The real Lipschitz constant in d-
dimensions for this illustrative case is thus: L = O(

√
dLx). A graphical picture of

this process and the resulting P-cone in two-dimensions is shown in Figure 2.
This case an be generalized by noting that L is always larger than any the

individual L′
xs and thus the P-cone is smaller than that derived from any individual

Lx including the maximum Lx for any direction. If we take the real shape of the
excluded region for a single x value based on the maximum coordinate derivatives
in each of the coordinate directions we get a starfish shaped region. As much higher
dimensional problems are considered, L becomes the smallest P-cone that can be
inscribed in the starfish exclusion region and the starfish itself becomes almost
a collection of one-dimensional exclusion problems with virtually no measurable
exclusion volume in d-dimensions. This means in practice that the algorithm would
be no better than pure random search, since a Lipschitz constant based P-cone
would have almost negligible measure. In this case the algorithm will halt when a
maximum number of sample points (Nmax) limit is reached (rather than a halt based
on any exclusion region limit).

The above facts cannot be avoided in principle. A heuristic approach which util-
izes the availability of Lx information, however, can be proposed. We simply recast
the algorithm into a search of each individual x-coordinate direction starting from
a random point in d-dimensions. In this fashion, td very efficient one-dimensional
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searches can be used to solve the larger problem with some significant efficiency
advantages accruing because of availability of Lx information. The maximum ef-
ficiency of one-dimensional problem exclusions regions can thus be transferred
to higher dimensional problems with only minimal approximations being used. A
d-dimensional problem reduced to a collection of d uncoupled one-dimensional
problems is the most efficient use of Lipschitz or pseudo-Lipschitz information.

The one-dimensional implementation of the SPT approach is the one we are,
therefore, recommending for higher dimensional problems. It effectively produces
a random line cover of a d-dimensional space with an underlying grid of density
Nd

min points. Of these points, only a fraction of them are required for function
evaluation depending on the 1-D exclusion regions that develop iteratively as more
function evaluations are made. In this sense it is guaranteed to be at least as efficient
as a fixed Nd

min grid evaluation of a d-dimensional function. The simplicity and
speed of the algorithm should give it a competitive advantage over most existing
approaches to global optimization in high dimensional problems. This advantage
is demonstrated well in the 314-dimensional seismic benchmark we present later
in this paper.

8. Science Benchmark Results

This section presents results of benchmarks carried out to assess the new SPT
algorithm using several standard multidimensional test functions taken from the
literature. A description of each test function can be found in Barhen and Proto-
popescu (1996); Cvijovic and Klinowski (1995). In Table 1, the performance of
SPT is compared to the best competing global optimization methods including the
previous version of TRUST published in Science (Barhen et al., 1997). Here the
term ‘best’ indicates the best widely reported reproducible results the authors could
find for the particular test function. The criterion for comparison is the number of
function evaluations. All SPT results were converged to a convergence criteria of
ε = 10−5.

In Table 1, the benchmark labels BR (Branin), CA (Camelback), GP (Goldstein-
Price), RA (Rastrigin), SH (Shubert), and H3 (Hartman), refer to the test func-
tions considered. The following abbreviations are also used: SDE is the stochastic
method of Aluffi-Pentini (Alluffi-Pentini et al., 1985); EA denotes the evolution
algorithms of Yong, Lishan, and Evans (Yong et al., 1995), or Schneider (Schneider
et al., 1996); MLSL is the multiple level single linkage method of Kan and Timmer
(Kan and Timmer, 1985); IA is the interval arithmetic technique of Ratschek and
Rokne (Ratschek and Rokne, 1988); TUN is the tunneling method of Levy and
Montalvo (Levy and Montalvo, 1985); and TS refers to the Taboo Search scheme
of Cvijovic and Klinowski (Cvijovic and Klinowski, 1995) and TRUST refers to
Barhen’s TRUST code (Barhen et al., 1997). The results demonstrate that TRUST
is substantially faster than these state-of-the-art method, albeit needing a number of
parameters to be optimized for each benchmark. The SPT results are comparable to
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Table 1. Number of function evaluations required by different
methods to reach a global minimum of several Standard Test
Functions.

Method BR CA GP RA SH H3

SDE 2700 10822 5439 – 241215 3416

EA 430 – 460 2048 – –

MLSL 206 – 148 – – 197

IA 1354 326 – – 7424 –

TUN – 1469 – – 12160 –

TS 492 – 486 540 727 508

TRUST 55 31 103 59 72 58

SPT 67 26 123 140 150 75

the TRUST numbers and use only a single adjustable parameter and are averaged
over 100 random (vs 2d deterministic) runs.

9. Large-scale Application

To assess the performance of SPT for a large-scale practical application, the high-
dimensional problem of residual statics corrections for seismic data was chosen. A
description of the residual statics problem appears in Barhen et al. (1997) but for
ease of understanding the brief description in Barhen et al. (1997) is repeated here.

Basically the optimization problem arises from the seismic energy measurement
process. This energy is detected by receivers that are regularly spaced along a grid
that covers the domain being explored. A source is positioned at some grid location
to produce a shot. Time series data is collected from the detectors for each shot,
then the source is moved to another grid node for the next shot.

Degradation of seismic signals usually arises from near-surface geologic irreg-
ularities (Rothman, 1985; Yilmaz, 1988; DuBose, 1993) which include uneven soil
densities, topography, and significant lateral variations in the velocity of seismic
waves. The most important consequence of such irregularities is the recording of
a distorted image of the subsurface structure due to delays travel times of seis-
mic waves in a vertical neighborhood of every source and receiver. To improve
the quality of the seismic analysis, timing adjustments (i.e., ‘statics corrections’)
must be performed. This problem has generally been formulated in terms of global
optimization, and, to date, Monte-Carlo techniques (Sen and Stoffa, 1995) (e.g.,
simulated annealing, genetic algorithms) have provided the primary tools for seek-
ing a potential solution. Such an approach is extremely expensive, and a major
need has existed for better methods which would allow the accurate and efficient
solution of large-scale problems.
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The statics correction optimization problem can be summarized as follows.
Acoustic signals are shot from Ns source locations and received by Nr sensors.
Each signal reflects at a midpoint k, k = 1, ..., Nk . A trace t corresponds to seismic
energy traveling from a source st to a receiver rt via a midpoint kt . We denote by
Dft the (complex) Fourier coefficient of frequency f (f = 1, .., Nf ) for trace t ,
t = 1, ..., Nt � NrNs . Ideally, after they have been corrected for normal move
out (Yilmaz, 1988), all traces corresponding to the same midpoint carry coherent
information . If there were no need for statics corrections, all signals, stacked by
their common midpoint, should be in phase and yield a maximum for the total
power

E(S,R) =
∑

k

∑

f

|
∑

t

exp[2πi f (Sst + Rrt )]Dftδkkt |2 . (9.1)

In (1), the statics corrections S = (S1, .., SNs
), and R = (R, .., RNr

) are now
considered independent variables. Their optimum values are found by maximizing
the power E. This expression highlights the multimodal nature of E which, even for
relatively low dimensional S and R, has been found to exhibit a very large number
of local minima.

A smaller problem in a 154-dimensional space has already been reported in
the Barhen Science paper. To assess the performance improvements of the SPT
algorithm, we considered a much larger problem involving Ns = 100 shots and
Nr = 216 receivers yielding a 316-dimensional space. A data set consisting of Nt

= 4776 synthetic seismic traces folded over Nk = 423 common midpoint gathers
was obtained from CogniSeis Corporation (DuBose). It uses Nf = 118 Fourier
components for data representation. This set is somewhat typical of collections
obtained during seismic surveys by the oil industry and is thus representative of
the complexity underlying generic residual statics problems.

To derive a quantitative estimate of SPT’s impact, the next two figures show
the original subsurface map without statics corrections and the same map derived
after solving the statics optimization problem. The SPT results illustrated in Figure
4 show significant improvement over the uncorrected results shown in Figure 3.
These results also show considerable improvement over an attempt to solve this
same problem with industry standard methods (see discussion in Barhen et al., to
appear). The optimization run used an adaptive method for estimating the pseudo-
Lipschitz constant which resulted in a value of Lps = 50. A one-dimensional grid
of Nmax = 100, 000 was used to converge each individual one-dimensional ray.
The approximate global minimum found by SPT was fmin=−2442 compared with
an industry best result of fmin=−2230. The industry method required close to 40
h of computer time to converge compared with less than one hour for SPT on
comparable computing hardware. TRUST itself, was unable to solve the problem
in its full dimensional entirety. A stack decomposition method similar to that used
to solve the original Science paper statics 154-dimensional problem was needed to
achieve a result of fmin=−2320.
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Figure 3. Unoptimized subsurface seismic map.

10. Conclusions

From the results presented, one can conclude that a stochastic approach to tunnel-
ing makes a considerable improvement in Barhen’s TRUST approach to solving
continuous-function global optimization problems. This new approach builds on
the deterministic tunneling-descent methodology presented by Barhen et al. (Bar-
hen and Protopopescu, 1996; Barhen and Protopopescu, 1997), as one of the best
benchmark methods to date, but uses a rejection-based stochastic procedure to
locate new local minima descent regions. The method employs a series of local
descents interspersed with stochastic search to find new local minima, using a
rejection-based stochastic procedure to prune the tunneling search space traversed
in searching for new local minima descent regions. It uses a fixed Lipschitz-like
constant to reject unpromising regions in this search space thereby increasing the
efficiency of the tunneling process. The algorithm is most easily implemented in
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Figure 4. Optimized subsurface seismic map.

low-dimensional problems, which allows it to be used efficiently as a heuristic
in large scale problems. Several variations of the basic algorithm should allow
for further improvements in efficiency by allowing approximations to be made to
estimating the algorithms parameters. The benchmark results presented, show that
the algorithm is competitive with the best previously reported global optimization
techniques. A successful application of the approach (using the one-dimensional
approximation search scheme) to a large-scale seismology problem of substantial
computational complexity bears out the practical applicability of the approach.
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